Еще одна попытка
Oct. 1st, 2012 02:23 pmНесколько часов назад Джастин Мур (Justin Moore) разослал электронное письмо с сообщением о том, что он отзывает свое доказательство аменабельности группы Томпсона. Оно содержалось в препринте, появившемся на архиве 3 недели назад. За последние несколько лет это уже четвертая известная мне попытка. Мур представлялся более серьезным, чем предыдущие претенденты, и, как он сам пишет, по меньшей мере 9 человек успели подтвердить правильность его доказательства. Дырку обнаружил он сам. Довольно редким по нынешним временам и заслуживающим глубокого уважения является то, что Мур признал свою ошибку явным и недвусмысленным образом (к примеру, жанр "Письма в редакцию" с сообщением о найденных в собственной статье ошибках является в настоящее время почти вымершим).
Сама проблема, хотя она и мало известна широкой публике, очень интересна - в частности, благодаря своей элементарности. В течение получаса ее можно объяснить старшекласснику. Два основных понятия здесь - это, во-первых, группа (одно из центральных понятий современной математики), а во-вторых, аменабельность, или, в более буквальном переводе на русский, усреднимость (это, пожалуй, наиболее естественное обобщение понятия конечности; с аменабельностью мы сталкиваемся всякий раз, когда сглаживаем рад наблюдений, переходя к их средним). Проблема заключается в том, будет ли аменабельна (усреднима) группа, порожденная двумя совершенно конкретными кусочно-линейными преобразованиями отрезка. Эта группа обладает массой замечательных свойств, и как положительный, так и отрицательный ответ на этот вопрос имели бы многочисленные следствия.
Сама проблема, хотя она и мало известна широкой публике, очень интересна - в частности, благодаря своей элементарности. В течение получаса ее можно объяснить старшекласснику. Два основных понятия здесь - это, во-первых, группа (одно из центральных понятий современной математики), а во-вторых, аменабельность, или, в более буквальном переводе на русский, усреднимость (это, пожалуй, наиболее естественное обобщение понятия конечности; с аменабельностью мы сталкиваемся всякий раз, когда сглаживаем рад наблюдений, переходя к их средним). Проблема заключается в том, будет ли аменабельна (усреднима) группа, порожденная двумя совершенно конкретными кусочно-линейными преобразованиями отрезка. Эта группа обладает массой замечательных свойств, и как положительный, так и отрицательный ответ на этот вопрос имели бы многочисленные следствия.